A Note on Goldbach Partitions of Large Even Integers

نویسنده

  • Ljuben R. Mutafchiev
چکیده

Let Σ2n be the set of all partitions of the even integers from the interval (4, 2n], n > 2, into two odd prime parts. We show that |Σ2n| ∼ 2n2/ log n as n → ∞. We also assume that a partition is selected uniformly at random from the set Σ2n. Let 2Xn ∈ (4, 2n] be the size of this partition. We prove a limit theorem which establishes that Xn/n converges weakly to the maximum of two random variables which are independent copies of a uniformly distributed random variable in the interval (0, 1). Our method of proof is based on a classical Tauberian theorem due to Hardy, Littlewood and Karamata. We also show that the same asymptotic approach can be applied to partitions of integers into an arbitrary and fixed number of odd prime parts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the existence of a non-zero lower bound for the number of Goldbach partitions of an even integer

The Goldbach partitions of an even number, given by the sums of two prime addends, form the nonempty set for all integers 2nwith 2≤n≤ 2×1014. It will be shown how to determine by the method of induction the existence of a non-zero lower bound for the number of Goldbach partitions of all even integers greater than or equal to 4. The proof depends on contour arguments for complex functions in the...

متن کامل

On Randomness of Goldbach Sequences

We consider the use of Goldbach numbers as random sequences. The randomness is analyzed in terms of the autocorrelation function of the sequence of number of partitions. The distinct representations of an even number n as the sum of two primes is a local maximum for multiples of the product of the consecutive smallest primes less than the number. Specific partitions, which we call Goldbach elli...

متن کامل

Binary Additive Problems: Theorems of Landau and Hardy-littlewood Type

We prove theorems of Landau and Hardy-Littlewood type for Goldbach, Chen, Lemoime-Levy and other binary partitions of positive integers. We also pose some new conjectures.

متن کامل

Binary Additive Problems: Recursions for Numbers of Representations

We prove some general recursions for the numbers of representations of positive integers as a sum x + y, x ∈ X, y ∈ Y, where X, Y are increasing sequences. In particular, we obtain recursions for the number of the Goldbach, Lemoine-Levy, Chen and other binary partitions .

متن کامل

Goldbach Circles and Balloons and Their Cross Correlation

Abstract. Goldbach partitions can be used in creation of ellipses and circles on the number line. We extend this work and determine the count and other properties of concentric Goldbach circles for different values of n. The autocorrelation function of this sequence with respect to even and odd values suggests that it has excellent randomness properties. Cross correlation properties of ellipse ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2015